Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Molecules ; 26(17)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1390702

RESUMEN

Human neutrophil elastase (HNE) is a uniquely destructive serine protease with the ability to unleash a wave of proteolytic activity by destroying the inhibitors of other proteases. Although this phenomenon forms an important part of the innate immune response to invading pathogens, it is responsible for the collateral host tissue damage observed in chronic conditions such as chronic obstructive pulmonary disease (COPD), and in more acute disorders such as the lung injuries associated with COVID-19 infection. Previously, a combinatorially selected activity-based probe revealed an unexpected substrate preference for oxidised methionine, which suggests a link to oxidative pathogen clearance by neutrophils. Here we use oxidised model substrates and inhibitors to confirm this observation and to show that neutrophil elastase is specifically selective for the di-oxygenated methionine sulfone rather than the mono-oxygenated methionine sulfoxide. We also posit a critical role for ordered solvent in the mechanism of HNE discrimination between the two oxidised forms methionine residue. Preference for the sulfone form of oxidised methionine is especially significant. While both host and pathogens have the ability to reduce methionine sulfoxide back to methionine, a biological pathway to reduce methionine sulfone is not known. Taken together, these data suggest that the oxidative activity of neutrophils may create rapidly cleaved elastase "super substrates" that directly damage tissue, while initiating a cycle of neutrophil oxidation that increases elastase tissue damage and further neutrophil recruitment.


Asunto(s)
Inmunidad Innata , Elastasa de Leucocito/metabolismo , Metionina/análogos & derivados , Neutrófilos/inmunología , Biocatálisis , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Dominio Catalítico/genética , Pruebas de Enzimas , Interacciones Huésped-Patógeno/inmunología , Humanos , Elastasa de Leucocito/antagonistas & inhibidores , Elastasa de Leucocito/genética , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Metionina/metabolismo , Simulación de Dinámica Molecular , Infiltración Neutrófila , Neutrófilos/enzimología , Oxidación-Reducción/efectos de los fármacos , Proteolisis/efectos de los fármacos , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/patología , SARS-CoV-2/inmunología , Especificidad por Sustrato/inmunología
2.
Molecules ; 26(11)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1259548

RESUMEN

In December 2020, the U.K. authorities reported to the World Health Organization (WHO) that a new COVID-19 variant, considered to be a variant under investigation from December 2020 (VUI-202012/01), was identified through viral genomic sequencing. Although several other mutants were previously reported, VUI-202012/01 proved to be about 70% more transmissible. Hence, the usefulness and effectiveness of the newly U.S. Food and Drug Administration (FDA)-approved COVID-19 vaccines against these new variants are doubtfully questioned. As a result of these unexpected mutants from COVID-19 and due to lack of time, much research interest is directed toward assessing secondary metabolites as potential candidates for developing lead pharmaceuticals. In this study, a marine-derived fungus Aspergillus terreus was investigated, affording two butenolide derivatives, butyrolactones I (1) and III (2), a meroterpenoid, terretonin (3), and 4-hydroxy-3-(3-methylbut-2-enyl)benzaldehyde (4). Chemical structures were unambiguously determined based on mass spectrometry and extensive 1D/2D NMR analyses experiments. Compounds (1-4) were assessed for their in vitro anti-inflammatory, antiallergic, and in silico COVID-19 main protease (Mpro) and elastase inhibitory activities. Among the tested compounds, only 1 revealed significant activities comparable to or even more potent than respective standard drugs, which makes butyrolactone I (1) a potential lead entity for developing a new remedy to treat and/or control the currently devastating and deadly effects of COVID-19 pandemic and elastase-related inflammatory complications.


Asunto(s)
4-Butirolactona/análogos & derivados , Antialérgicos/química , Antiinflamatorios/química , Aspergillus/química , SARS-CoV-2/enzimología , Proteínas de la Matriz Viral/antagonistas & inhibidores , 4-Butirolactona/química , 4-Butirolactona/aislamiento & purificación , 4-Butirolactona/metabolismo , Antialérgicos/metabolismo , Antiinflamatorios/metabolismo , Aspergillus/crecimiento & desarrollo , Aspergillus/metabolismo , Sitios de Unión , COVID-19/patología , COVID-19/virología , Dominio Catalítico , Humanos , Elastasa de Leucocito/antagonistas & inhibidores , Elastasa de Leucocito/metabolismo , Espectroscopía de Resonancia Magnética , Conformación Molecular , Simulación del Acoplamiento Molecular , Neutrófilos/enzimología , SARS-CoV-2/aislamiento & purificación , Agua de Mar/microbiología , Proteínas de la Matriz Viral/metabolismo
3.
J Enzyme Inhib Med Chem ; 36(1): 1016-1028, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1226495

RESUMEN

Elastase is a proteolytic enzyme belonging to the family of hydrolases produced by human neutrophils, monocytes, macrophages, and endothelial cells. Human neutrophil elastase is known to play multiple roles in the human body, but an increase in its activity may cause a variety of diseases. Elastase inhibitors may prevent the development of psoriasis, chronic kidney disease, respiratory disorders (including COVID-19), immune disorders, and even cancers. Among polyphenolic compounds, some flavonoids and their derivatives, which are mostly found in herbal plants, have been revealed to influence elastase release and its action on human cells. This review focuses on elastase inhibitors that have been discovered from natural sources and are biochemically characterised as flavonoids. The inhibitory activity on elastase is a characteristic of flavonoid aglycones and their glycoside and methylated, acetylated and hydroxylated derivatives. The presented analysis of structure-activity relationship (SAR) enables the determination of the chemical groups responsible for evoking an inhibitory effect on elastase. Further study especially of the in vivo efficacy and safety of the described natural compounds is of interest in order to gain better understanding of their health-promoting potential.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Flavonoides/farmacología , Elastasa de Leucocito/antagonistas & inhibidores , Neutrófilos/enzimología , COVID-19/metabolismo , Inhibidores Enzimáticos/química , Flavonoides/química , Humanos , Elastasa de Leucocito/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neutrófilos/efectos de los fármacos , Relación Estructura-Actividad , Tratamiento Farmacológico de COVID-19
4.
Anesthesiology ; 134(5): 792-808, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1202432

RESUMEN

Acute respiratory distress syndrome is characterized by hypoxemia, altered alveolar-capillary permeability, and neutrophil-dominated inflammatory pulmonary edema. Despite decades of research, an effective drug therapy for acute respiratory distress syndrome remains elusive. The ideal pharmacotherapy for acute respiratory distress syndrome should demonstrate antiprotease activity and target injurious inflammatory pathways while maintaining host defense against infection. Furthermore, a drug with a reputable safety profile, low possibility of off-target effects, and well-known pharmacokinetics would be desirable. The endogenous 52-kd serine protease α1-antitrypsin has the potential to be a novel treatment option for acute respiratory distress syndrome. The main function of α1-antitrypsin is as an antiprotease, targeting neutrophil elastase in particular. However, studies have also highlighted the role of α1-antitrypsin in the modulation of inflammation and bacterial clearance. In light of the current SARS-CoV-2 pandemic, the identification of a treatment for acute respiratory distress syndrome is even more pertinent, and α1-antitrypsin has been implicated in the inflammatory response to SARS-CoV-2 infection.


Asunto(s)
Neutrófilos/efectos de los fármacos , Proteínas Inhibidoras de Proteinasas Secretoras/administración & dosificación , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , alfa 1-Antitripsina/administración & dosificación , Animales , COVID-19/enzimología , COVID-19/inmunología , Humanos , Factores Inmunológicos/administración & dosificación , Factores Inmunológicos/inmunología , Pulmón/efectos de los fármacos , Pulmón/enzimología , Pulmón/inmunología , Neutrófilos/enzimología , Neutrófilos/inmunología , Proteínas Inhibidoras de Proteinasas Secretoras/inmunología , Síndrome de Dificultad Respiratoria/enzimología , Síndrome de Dificultad Respiratoria/inmunología , alfa 1-Antitripsina/inmunología , Tratamiento Farmacológico de COVID-19
5.
Biomaterials ; 267: 120389, 2021 01.
Artículo en Inglés | MEDLINE | ID: covidwho-898508

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new strain of coronavirus not previously identified in humans. Globally, the number of confirmed cases and mortality rates of coronavirus disease 2019 (COVID-19) have risen dramatically. Currently, there are no FDA-approved antiviral drugs and there is an urgency to develop treatment strategies that can effectively suppress SARS-CoV-2-mediated cytokine storms, acute respiratory distress syndrome (ARDS), and sepsis. As symptoms progress in patients with SARS-CoV-2 sepsis, elevated amounts of cell-free DNA (cfDNA) are produced, which in turn induce multiple organ failure in these patients. Furthermore, plasma levels of DNase-1 are markedly reduced in SARS-CoV-2 sepsis patients. In this study, we generated recombinant DNase-1-coated polydopamine-poly(ethylene glycol) nanoparticulates (named long-acting DNase-1), and hypothesized that exogenous administration of long-acting DNase-1 may suppress SARS-CoV-2-mediated neutrophil activities and the cytokine storm. Our findings suggest that exogenously administered long-acting nanoparticulate DNase-1 can effectively reduce cfDNA levels and neutrophil activities and may be used as a potential therapeutic intervention for life-threatening SARS-CoV-2-mediated illnesses.


Asunto(s)
COVID-19/complicaciones , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , ADN/sangre , Desoxirribonucleasa I/uso terapéutico , Portadores de Fármacos/administración & dosificación , Nanopartículas/administración & dosificación , Neutrófilos/efectos de los fármacos , SARS-CoV-2 , Sepsis/tratamiento farmacológico , Animales , COVID-19/sangre , COVID-19/inmunología , Síndrome de Liberación de Citoquinas/etiología , Desoxirribonucleasa I/administración & dosificación , Dexametasona/uso terapéutico , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Trampas Extracelulares/efectos de los fármacos , Humanos , Indoles , Masculino , Ratones , Ratones Endogámicos C57BL , Insuficiencia Multiorgánica/sangre , Insuficiencia Multiorgánica/etiología , Insuficiencia Multiorgánica/prevención & control , FN-kappa B/sangre , Neutrófilos/enzimología , Peroxidasa/sangre , Polietilenglicoles , Poliglactina 910 , Polímeros , Sepsis/etiología , Sepsis/inmunología
6.
J Med Chem ; 63(22): 13258-13265, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: covidwho-659643

RESUMEN

Cathepsin C (CatC) is a cysteine dipeptidyl aminopeptidase that activates most of tissue-degrading elastase-related serine proteases. Thus, CatC appears as a potential therapeutic target to impair protease-driven tissue degradation in chronic inflammatory and autoimmune diseases. A depletion of proinflammatory elastase-related proteases in neutrophils is observed in patients with CatC deficiency (Papillon-Lefèvre syndrome). To address and counterbalance unwanted effects of elastase-related proteases, chemical inhibitors of CatC are being evaluated in preclinical and clinical trials. Neutrophils may contribute to the diffuse alveolar inflammation seen in acute respiratory distress syndrome (ARDS) which is currently a growing challenge for intensive care units due to the outbreak of the COVID-19 pandemic. Elimination of elastase-related neutrophil proteases may reduce the progression of lung injury in these patients. Pharmacological CatC inhibition could be a potential therapeutic strategy to prevent the irreversible pulmonary failure threatening the life of COVID-19 patients.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Catepsina C/antagonistas & inhibidores , Pulmón/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Animales , COVID-19/enzimología , Línea Celular Tumoral , Ensayos Clínicos como Asunto , Evaluación Preclínica de Medicamentos , Humanos , Pulmón/inmunología , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Neutrófilos/enzimología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/uso terapéutico , Síndrome de Dificultad Respiratoria/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA